Notation:

⇒ means implies Example: it's raining ⇒ the ground is wet What about the converse? the ground is wet ⇒ it's raining? That's not always true! Maybe the ground is wet because the sprinklers are on.

If both a statement and its converse are true, we use the symbol ⇔ which means if and only if Example: you are a parent ⇒ you have a child you have a child ⇒ you are a parent Thus, you are a parent ⇔ you have a child.

Math example 1: $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable \Rightarrow f is continuous f: IR-> IR is continuous >>>> f is differentiable (think about f(x) = |x|)

Math example 2:

$$2x+3=4 \implies 2x=1$$
 (subtract 3 from both sides)
 $2x=1 \implies 2x+3=4$ (add 3 to both sides)
Thus, $2x+3=4 \iff 2x=1$

st means "such that"

Topic 1: Convergence

natural numbers $IN = \{1, 2, 3, ...\}$

Let (X,d) be a metric space. A sequence in X is the list of outputs of a function $F: \mathbb{N} \to X$ and is denoted $\xian\xi$. $n \mapsto a_n$

Example 1:
$$f: \mathbb{N} \rightarrow \mathbb{R}$$
 or $a_n = \frac{1}{n}$
 $n \mapsto \frac{1}{n}$

 $1, \pm, \pm, \pm, \pm, \dots$ You may recognize this as a harmonic sequence.

Example 2:
$$f: N \rightarrow IR$$
 or $a_n = 5n+1$
 $n \rightarrow 5n+1$

(b, 11, 16, 21, 26, 31, ...

Example 3:
$$a_n = \frac{n+1}{n+2}$$

 $\frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \frac{6}{7}, \cdots$

Example 4: Fibonacci sequence $I_{1}I_{1} Z_{1} 3_{1} 5_{1} 8_{1} I 3_{1} 2I_{1} 34$ $a_{1}=1$ $a_{2}=1$ $a_{n}=a_{n-2}+a_{n-1}$ (n ≥ 3)

This sequence is called recursive.

Example 5:
$$a_n = -1$$
 if n is odd
 $a_n = 1$ if n is even

•••رارا- رارا- _رارا- ا

Converge: to move toward one point Do these sequences converge?

You saw this in calculus written as

$$\lim_{x \to \infty} \frac{1}{x} = 0$$
 $\lim_{x \to \infty} (5x+1) = \infty$ $\lim_{x \to \infty} \frac{x+1}{x+2} = 1$

Mathematically, what does it mean when we say $a_n = \frac{1}{n}$ converges to zero? Notation: $a_n \rightarrow 0$ or $\lim_{n \rightarrow \infty} a_n = 0$

It means that past a <u>certain point</u> in the sequence, all the numbers in the sequence are <u>really close to ()</u>. There is an NEN such that

$$\frac{n > N}{p} \Rightarrow \frac{d(a_{n}, 0) \approx 0}{p}$$
How close to zero?
$$\frac{Arbitrarily}{b} close.$$

$$\frac{d(a_{n}, 0) < \epsilon}{d(a_{n}, 0) < \epsilon} \text{ for any } \epsilon \in \mathbb{R} \text{ st } \epsilon > 0$$

A sequence §an3 in a metric space (X,d) converges to a∈X if VE>0 JNEIN such that n>N ⇒d(an,a)<E. We say a is the limit of §an3. If §an3 does not converge, then §an3 diverges.

Let pex and r>0.

The ball in X centered at p with radius r is the set $B(p,r) = \{x \in X \mid d(x,p) < r\}$.

Example 1: X=IR and d is the usual Metric

$$B(0,1) \leftarrow (+) \rightarrow R$$

Example 2: $X = IR^2$ and d is the usual metric B((312),1) IR^2 Example 3: $X = 1R^2$ and d is the taxicab metric B((0,0), 2) R^2

We saw yesterday what it means for a subset of an ordered set (s, <) to be bounded. Now...

Let
$$(X,d)$$
 be a metric space and $E \subseteq X$.
E is bounded if $\exists M \in \mathbb{R}$ and $g \in X$ st
 $\frac{d(p_1q) < M \quad \forall p \in E}{\int}$
 \int
In other words, $E \subseteq B(q,M)$.

Example 1: X=IR and d is the usual metric

 $E = [-3, 4] \subseteq B(0, 4)$ $\leftarrow + (\bullet + + + \bullet + \bullet + \bullet)$

Example 2: X=12° and d is the usual metric

 $E = \{ (x_1y_1) \in \mathbb{R}^2 \mid 1 \leq x \leq 2 \text{ and } y = x^2 \} \leq B((1,2), \underline{4})$

A sequence in a metric space (X,d) can be thought of as a subset of X. Thus, a sequence $\xi a_n \overline{s}$ in X is bounded if $\xi a_n \overline{s} = X$ is bounded as defined above. Example 1: $a_n = sin(n)$ is bounded in IR $\leftarrow (-1.5 - 1 - 0) = 1.5$ B(0, 1.5)

Example 2: $a_n = -1/n^2 + 3$ is bounded in IR

Example 3: an=2" is not bounded

 (X_{jd}) is a metric space.

Theorem The limit of a convergent sequence is unique.

Proof: (by contradiction)
Let
$$\{a_n\} \leq x$$
 be a sequence that converges to
both $x_1 \in x$ and $x_2 \in x$ where $x_1 \neq x_2$.
 $x_1 \neq x_2 \Rightarrow d(x_1, x_2) > 0$
Let $\epsilon = \frac{d(x_1, x_2)}{2}$
Since $a_n \rightarrow x_1 = N_1 \in \mathbb{N}$ st
 $n > N_1 \Rightarrow d(a_n, x_1) < \epsilon = \frac{d(x_1, x_2)}{2}$
and since $a_n \rightarrow x_2 = 3N_2 \in \mathbb{N}$ st

$$n^{>}N_{2} \Rightarrow d(a_{n}, x_{2}) \in \mathcal{E} = \frac{d(x_{1}, x_{2})}{2}$$

Then
$$d(x_1, x_2) \leq d(x_1, a_n) + d(a_n, x_2)$$

= $d(a_n, x_1) + d(a_n, x_2)$

$$= \frac{d(X_1, X_2)}{2} + \frac{d(X_1, X_2)}{2} \quad \text{when } n > N_1 \text{ and}$$
$$= d(X_1, X_2)$$

So $d(x_1,x_2) < d(x_1,x_2) \xrightarrow{contradiction} A$ number is not less than itself. Thus, no such distinct limits $a_{1,1}a_2$ exist. Therefore, the limit of a convergent sequence is Unique.

Theorem Every convergent sequence is bounded. Proof: Let $\{a_n\} \in X$ converge to $a \in X$. Let $\mathcal{E} = I$. Since $a_n \rightarrow a$ $\exists N \in IN \ s + n \ge N \Rightarrow d(a_n, a) < \mathcal{E} = I$. Consider the first N terms $a_1, a_2, ..., a_N$ in the sequence.

Let
$$M = \max\{d(a_1, a), d(a_2, a), ..., d(a_n, a), 1\}$$
.
 $M \ge 1$

Then $d(a_n, a) \leq M$ when $l \leq n \leq N$ and $d(a_n, a) < l \leq M$ when n > N, so $d(a_n, a) \leq M$ $\forall n \in N$. Thus, $\exists a_n \vec{s} \leq B(a, M+l)$. Therefore, $\exists a_n \vec{s}$ is bounded. \blacksquare

Converse: If Ean3 is bounded, then Ean3 converges. This is false! (worksheet 2)

A sequence $\epsilon_{n,\delta}$ is increasing if $a_{n+1} \ge a_n$ then.

Example: $1, 3, 5, 7, 9, 11, ..., a_n = 2n - 1$

A sequence fant is decreasing if antiEan VneIN. Example: $-2_1 - 4_1 - 6_1 - 8_2 - 10_2 \dots a_n = -2n$

A sequence {an3 is monotonic if {an3 is increasing or {an3 is decreasing.

Theorem If {an3 is bounded and monotonic, then {an3 converges. Proof: worksheet 2

Subsequences Example 1: sequence: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...subsequence: 1, 2, 5, 13, 34, ...

Example 2: sequence: 2,4,6,8,10,12,14,16,18,20,22,29,26,... subsequence: 8, 16, 18, 20, 30, 40, 52, 58, ... <u>Rule:</u> we can't choose a term more than once. Example: sequence: 1,2,4,7,11,16,22,5,5,5,27,... not a subsequence: 4, 11, 11, 22, 5, 5, 27, ... Notation:

Let $\{n_{\kappa}\}_{\kappa=1}^{\infty}$ be a strictly increasing sequence of natural numbers (no repetition allowed) The sequence $\{a_{n_{\kappa}}\}$ is a subsequence of $\{a_{n_{\kappa}}\}$ is a subsequence of $\{a_{n_{\kappa}}\}$. Example : $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}, \dots$ $a_{1}, a_{3}, a_{5}, a_{7}, a_{9}, \dots$ $\{n_{k}, x_{k=1}^{\infty} = \{1, 3, 5, 7, 9, \dots\}$

Theorem If $a_n \rightarrow a$, then every subsequence of $\xi a_n \xi$ converges to a.

Proof: Let
$$\{a_n\}\ be a sequence st a_n \rightarrow a$$
.
Let $\{a_{n_k}\}\ be a subsequence of $\{a_n\}\$.
 $a_n \rightarrow a \Rightarrow \forall E > 0$, $\exists N \in \mathbb{N}\ st n > N \Rightarrow$
 $d(a_n, a) < E$.
Note: $n_k \geq k \ \forall k \in \mathbb{N}$
Example $\{a_1\}\ a_{21}(a_{3})\ a_{41}(a_{51})a_{61}(a_{71})a_{81}(a_{91})a_{10}, \dots$
 $n_1 = 1 \xrightarrow{n_2 = 3}\ n_3 = 5\ n_4 = 7\ n_5 = 9$$

Let $K \ge N$. By the note, $n_K \ge K$. Thus, $n_K \ge K \ge N \implies n_K \ge N$ $\implies d(a_{n_K, n_K}a) \le E$

Therefore, ank-a.

Proving a specific sequence converges Claim: $a_n = 1/n \longrightarrow 0$

Proof: Let E>O.

we must find some NEIN so that $d(h_0) < \varepsilon$ whenever n > N.

$$d(\frac{1}{n}, 0) = |\frac{1}{n} - 0|$$

$$= |\frac{1}{n}|$$

$$= \frac{1}{n} \text{ since } n \in \mathbb{N} \implies n > 0$$

$$c \in \text{ when } n > \frac{1}{\epsilon}$$
side work: $\frac{1}{n} - \epsilon$

$$\Leftrightarrow |c \in \mathbb{N}$$

$$\Leftrightarrow \frac{1}{\epsilon} < n$$

$$\Leftrightarrow \frac{1}{\epsilon} < n$$
Therefore, $\frac{1}{n} \rightarrow 0$

Claim:
$$a_n = \frac{n+1}{n+2} \longrightarrow 1$$

Proof: Let $\varepsilon > 0$
 $d\left(\frac{n+1}{n+2}, 1\right) = \left|\frac{n+1}{n+2} - 1\right|$
 $= \left|\frac{n+1-n-2}{n+2}\right|$
 $= \left|\frac{-1}{n+2}\right|$
 $= \left|\frac{-1}{n+2}\right|$
 $= \frac{1}{n+2}$ (remember $n > 0$)
 $\varepsilon \varepsilon$ when $n > \frac{1}{\varepsilon} - 2$
side work: $\frac{1}{n+2} - \varepsilon \varepsilon$
 $\Leftrightarrow 1 - \varepsilon (n+2)$
 $\Leftrightarrow \frac{1}{\varepsilon} - 2 - n$
 $\Leftrightarrow \frac{1}{\varepsilon} - 2 - n$
 $\Leftrightarrow n > \frac{1}{\varepsilon} - 2$
Therefore, $\frac{n+1}{n+2} \longrightarrow 1$

More examples
1. Prove
$$a_n = \frac{\cos(n)}{n^2 + 17} \longrightarrow 0$$

Proof: Let $\varepsilon > 0$.
 $d\left(\frac{\cos(n)}{n^2 + 17}, 0\right) = \left|\frac{\cos(n)}{n^2 + 17} - 0\right|$
 $= \left|\frac{\cos(n)}{n^2 + 17}\right|$
 $= \frac{|\cos(n)|}{|n^2 + 17|}$
 $= \frac{|\cos(n)|}{n^2 + 17}$ $-|\varepsilon \cos(n)| \le | \implies |\cos(n)| \le |$
 $\leq \frac{1}{n^2}$
 $\leq \varepsilon$ if $n > \sqrt{\frac{1}{\varepsilon}}$
side work: $\frac{1}{n^2} < \varepsilon$
 $\Leftrightarrow |c| \le n^2$
 $\Leftrightarrow \frac{1}{\varepsilon} < n^2 \le \frac{1}{\varepsilon}$
 $\Leftrightarrow n > \sqrt{\frac{1}{\varepsilon}}$
Therefore, $\frac{\cos(n)}{n^2 + 17} \longrightarrow 0$

$$\begin{aligned} 2 \cdot a_{n} &= \frac{(1+4n)^{2}}{1-3n-6n^{2}} \longrightarrow \frac{-8}{3} \\ \text{Proof: Let } \epsilon > 0. \\ d\left(\frac{(1+4n)^{2}}{1-3n-6n^{2}}, -\frac{8}{3}\right) &= \left|\frac{(1+4n)^{2}}{1-3n-6n^{2}} - \left(-\frac{8}{3}\right)\right| \\ &= \left|\frac{1+8n+16n^{2}}{1-3n-6n^{2}} + \frac{8}{3}\right| \\ &= \left|\frac{3(1+8n+16n^{2}) + 8(1-3n-6n^{2})}{3(1-3n-6n^{2})}\right| \\ &= \left|\frac{3+24n+48n^{2} + 8-24n-48n^{2}}{3(1-3n-6n^{2})}\right| \\ &= \left|\frac{31}{3(1-3n-6n^{2})}\right| \\ &= \frac{11}{3(1-3n-6n^{2})} \end{aligned}$$

