Sequences and Subsequences 1

Topic 1: Convergence

- 1. Does $a_n = \frac{16}{n^3}$ converge in \mathbb{R} ? If yes, find what it converges to.
- **2.** Does $a_n = \frac{80}{\sqrt{5n}}$ converge in \mathbb{R} ? If yes, find what it converges to.
- **3.** Does $a_n = \cos(n)$ converge in \mathbb{R} ? If yes, find what it converges to.
- **4.** Does $a_n = 1 \frac{(-1)^n}{n}$ converge in \mathbb{R} ? If yes, find what it converges to.
- **5.** Does $a_n = \frac{9-7n}{8+13n}$ converge in \mathbb{R} ? If yes, find what it converges to.
- **6.** Does $a_n = -n$ converge in \mathbb{R} ? If yes, find what it converges to.
- 7. Does $a_n = \frac{(1+2n)^2}{5+3n+3n^2}$ converge in \mathbb{R} ? If yes, find what it converges to.

Topic 2: Boundedness

- 8. Is $a_n = \frac{16}{n^3}$ bounded? If yes, find a ball (interval) that bounds it.
- **9.** Is $a_n = \frac{80}{\sqrt{5n}}$ bounded? If yes, find a ball (interval) that bounds it.
- **10.** Is $a_n = \cos(n)$ bounded? If yes, find a ball (interval) that bounds it.
- **11.** Is $a_n = 1 \frac{(-1)^n}{n}$ bounded? If yes, find a ball (interval) that bounds it.
- **12.** Is $a_n = \frac{9-7n}{8+13n}$ bounded? If yes, find a ball (interval) that bounds it.
- **13.** Is $a_n = -n$ bounded? If yes, find a ball (interval) that bounds it.
- **14.** Is $a_n = \frac{(1+2n)^2}{5+3n+3n^2}$ bounded? If yes, find a ball (interval) that bounds it.

Sequences and Subsequences 2

Prove that the following sequences in \mathbb{R} converge.

- 1. $a_n = \frac{16}{n^3} \to 0$ 2. $a_n = \frac{80}{\sqrt{5n}} \to 0$ 3. $a_n = 1 - \frac{(-1)^n}{n} \to 1$ 4. $a_n = \frac{9-7n}{8+13n} \to \frac{-7}{13}$ 5. $a_n = \frac{(1+2n)^2}{5+3n+3n^2} \to \frac{4}{3}$
- **6. Theorem:** If a sequence $\{a_n\}$ converges, then $\{a_n\}$ is bounded.

Converse: If a sequence $\{a_n\}$ is bounded, then $\{a_n\}$ converges. This converse is false! Give an example of a bounded sequence that does not converge.

7. Give an example of a sequence that has both convergent and divergent subsequences.

8. Prove or provide a counterexample: If $\{a_n\}$ and $\{b_n\}$ are bounded, then $\{a_n + b_n\}$ is bounded.

9. Prove that if a sequence $\{a_n\}$ is bounded and monotonic, then $\{a_n\}$ converges.

10. Prove that a sequence having at least one convergent subsequence has infinitely many convergent subsequences. (Hint: Use the theorem which says if $a_n \to a$, then every subsequence of $\{a_n\}$ converges to a.)