Series (continued)

Prove the p-series test.

Lemma 1 (nth term test, which we saw yesterday) If $\{a_n\}$ does not converge to 0, then $\sum_{n=1}^{\infty} a_n$ diverges.

Lemma 2 (integral test)

Let $a_n \geq 0 \ \forall n \in \mathbb{N}$. Let $f: [1, \infty) \to \mathbb{R}$ be such that $f(n) = a_n \ \forall n \in \mathbb{N}$. If f is positive and decreasing, then $\sum_{n=1}^{\infty} a_n$ converges $\iff \int_1^{\infty} f(x) \ \mathrm{d}x$ equals a number.

 ${\bf Theorem}\ ({\rm p\text{-}series}\ {\rm test})$

 $\sum_{n=1}^{\infty} 1/n^p \text{ converges } \iff p > 1.$

Proof:

Step 1: Consider the case when $p \le 0$. Use Lemma 1 to show that $\sum_{n=1}^{\infty} 1/n^p$ diverges.

Step 2: Consider the case when $0 . Use the contrapositive of Lemma 2 to show that <math>\sum_{n=1}^{\infty} 1/n^p$ diverges.

Step 2a: State the contrapositive of Lemma 2.

Step 2b: Is $f(x) = 1/x^p$ positive and decreasing $\forall x \in [1, \infty)$ when 0 ?

Step 2c: Compute $\int_1^\infty 1/x^p$ when 0 .

Step 2d: Conclude that $\sum_{n=1}^{\infty} 1/n^p$ diverges.

Step 3: Consider the case when p = 1.

Step 4: Consider the case when p > 1. Use Lemma 2 to show that $\sum_{n=1}^{\infty} 1/n^p$ converges.

Step 4a: Is $f(x) = 1/x^p$ positive and decreasing $\forall x \in [1, \infty)$ when p > 1?

Step 4b: Compute $\int_1^\infty 1/x^p$ when p > 1.

Step 4c: Conclude that $\sum_{n=1}^{\infty} 1/n^p$ converges.