
Continuity (cont.)

1. Let (X, d) be a metric space, E ⊆ X, and p ∈ X a limit point of E (not necessarily
in E). Prove there exists a sequence {pn} in E such that pn 6= p for all n ∈ N and
pn → p.

Hint: For each n ∈ N, consider the ball B(p, 1
n
). Since p is a limit point of E, what

do you know about this ball? Use this to construct a sequence and show it converges
to p.

2. Let (X, dX) and (Y, dY ) be metric spaces, E ⊆ X, p ∈ X a limit point of E, q ∈ Y ,
and f : E → Y . Prove lim

x→p
f(x) = q if and only if, for every sequence {pn} in E

satisfying pn 6= p for all n ∈ N and lim
n→∞

pn = p, we then have lim
n→∞

f(pn) = q.

Hint: For the forward direction, assume lim
x→p

f(x) = q, and let ε > 0. Write out

what it means that lim
x→p

f(x) = q using that ε. Then also assume that you have such

a sequence {pn} that converges to p. Write what that means using the δ you just
found. Then put those together to show {f(pn)} converges to q.
For the converse, prove the contrapositive: Assume lim

x→p
f(x) 6= q, and write out

what that means. Use that to produce a sequence {pn} which converges to p, similar
to problem 1, but {f(pn)} does not converge to q.

3. Use problems 1 and 2 and the fact that limits of sequences are unique to conclude
that the limit of a function is unique.

Hint: Assume lim
x→p

f(x) = q and lim
x→p

f(x) = r. Problem 1 gives you the existence of

a sequence {pn} which converges to p but is never equal to p. What does problem
2 tell you about {f(pn)}? And how does the uniqueness of limits of sequences then
tell you that q = r?


