Continuity (cont.)

1. Let (X, d) be a metric space, E C X, and p € X a limit point of F' (not necessarily
in F). Prove there exists a sequence {p,} in E such that p, # p for all n € N and
DPn = D-

Hint: For each n € N, consider the ball B(p, %) Since p is a limit point of E, what
do you know about this ball? Use this to construct a sequence and show it converges
to p.

2. Let (X, dx) and (Y, dy) be metric spaces, £ C X, p € X a limit point of £/, ¢ € Y,
and f: E — Y. Prove lim f(x) = ¢ if and only if, for every sequence {p,} in F
T—p

satisfying p, # p for all n € N and lim p, = p, we then have lim f(p,) = q.
n—oo n—oo

Hint: For the forward direction, assume lim f(x) = ¢, and let € > 0. Write out
T—p
what it means that lim f(z) = q using that €. Then also assume that you have such
T—p

a sequence {p,} that converges to p. Write what that means using the 6 you just
found. Then put those together to show {f(pn)} converges to q.

For the converse, prove the contrapositive: Assume lim f(x) # q, and write out
T—p

what that means. Use that to produce a sequence {p,} which converges to p, similar
to problem 1, but {f(p,)} does not converge to q.

3. Use problems 1 and 2 and the fact that limits of sequences are unique to conclude
that the limit of a function is unique.

Hint: Assume lim f(x) = q and lim f(x) = r. Problem 1 gives you the existence of
T—p T—p

a sequence {p,} which converges to p but is never equal to p. What does problem
2 tell you about {f(pn)}? And how does the uniqueness of limits of sequences then
tell you that ¢ =1r?



