1. Prove by induction that
$$
\sum_{n=1}^{k} n = 1+2+3+\ldots+k = \frac{k(k+1)}{2}
$$
.
Proof:

Step I Show this is true for some particular KEIN. $K=|\frac{1}{n}|$ $\sum_{n=1}^{n}$ $n=1$ $\frac{|\frac{1}{n}|}{2}$ $\frac{2}{2}$ $\frac{2}{2}$ $k=2: \sum_{n=1}^{2} n = 1+2=3 = \frac{2(2+1)}{2}$

$$
\frac{N}{\text{Step 2} \text{ Let } N \in \mathbb{N}. \quad \text{Assume} \quad \frac{N}{n=1} \cdot n = \frac{N(N+1)}{2}
$$

$$
\frac{\sqrt{1+1}}{\sqrt{1+1}} n = \frac{(N+1)(N+1+1)}{2} = \frac{(N+1)(N+2)}{2}
$$
\n
$$
\frac{N+1}{N+1} = 1 + 2 + 3 + \dots + (N-1) + N + (N+1)
$$
\n
$$
= \frac{N}{2} n + (N+1)
$$
\n
$$
= \frac{N(N+1)}{2} + (N+1)
$$
\n
$$
= \frac{N(N+1) + 2(N+1)}{2}
$$
\n
$$
= \frac{N(N+1) + 2(N+1)}{2}
$$
\n
$$
= \frac{(N+1)(N+2)}{2}
$$
\nTherefore, $\sum_{n=1}^{K} n = \frac{k(k+1)}{2}$ $\forall k \in \mathbb{N}$.

Answer: We need ε to be such that $d(-1, a) < \varepsilon$ and $d(i, a) \in \varepsilon$ is not possible. $E = 1$ works because (-2,0) and $(0,2)$ are disjoint. If ⁸⁸ 2

$$
-2 - 1 \quad 00 \quad 1 \quad 2
$$

If we let $E = Z_1$, there is no contradiction.

If we let $\epsilon = 1/2$, there is a contradiction because $\lfloor -3/2, -1/2 \rfloor$ and $\lfloor 1/2, 3/2 \rfloor$ are disjoint.

In general, any ϵ st $0 \leq \epsilon$ ϵ will lead to a contradiction

$$
d(0,a) \le 1/16
$$
.
Thus, a is within 1/16 of a unit of $1/g_1-1/g_1$ and O.
 \longrightarrow

The blue set, the red set, and the green set are disjoint. Therefore, $\{\frac{\sin(k\pi/z)}{8}\}$ does not converge. **MMD**

4. Prove that $\sum_{n=1}^{\infty} \left(\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}} \right)$ converges. a) What does s_{k} look like?

Answer:

$$
S_1 = \frac{1}{\sqrt{1}} - \frac{1}{\sqrt{2}} = \left| -\frac{1}{\sqrt{2}} \right| = \left| -\frac{1}{\sqrt{1+1}} \right|
$$

$$
S_2 = \left| -\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{3}} \right| = \left| -\frac{1}{\sqrt{3}} - \frac{1}{\sqrt{2+1}} \right|
$$

$$
S_3 = \left| -\frac{1}{\sqrt{3}} + \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{4}} \right| = \left| -\frac{1}{\sqrt{4}} - \frac{1}{\sqrt{3+1}} \right|
$$

$$
S_4 = \left| -\frac{1}{\sqrt{3}} + \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{5}} \right| = \left| -\frac{1}{\sqrt{5}} - \frac{1}{\sqrt{4+1}} \right|
$$

In general,
$$
S_K = 1 - \frac{1}{\sqrt{k+1}}
$$

b) show that
$$
\{s_k\}
$$
 converges.
Proof: I claim $\lim_{K\rightarrow\infty} S_K = \lim_{K\rightarrow\infty} (1-\frac{1}{\sqrt{k+1}})=1$

Let $E>0$. $d\left(1-\frac{1}{\sqrt{k+1}},1\right)=|1-\frac{1}{\sqrt{k+1}}-1|$ $= \left| \frac{1}{\sqrt{k+1}} \right|$

$$
= \frac{1}{\sqrt{k+1}}
$$
\nSide work: $\frac{1}{\sqrt{k+1}} < \epsilon$

\n
$$
\Leftrightarrow \frac{1}{\epsilon^{2}} < \sqrt{k+1}
$$
\n
$$
\Leftrightarrow \frac{1}{\epsilon^{2}} < k+1
$$
\n
$$
\Leftrightarrow \frac{1}{\epsilon^{2}} > |c| \epsilon
$$
\n
$$
\Leftrightarrow k > \frac{1}{\epsilon^{2}} - |c| \epsilon
$$

Thus,
$$
S_K \rightarrow I
$$
.
Therefore, $\sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{\sqrt{n+1}} \right)$ converges.