1. Prove by induction that
$$\sum_{n=1}^{k} n = 1+2+3+...+k = \frac{k(k+1)}{2}$$
.
Proof:
Step 1 Show this is true for some particular KEIN.

$$\begin{array}{l} k = |: \quad \sum_{n=1}^{l} n = | = \frac{|(|+1)}{2} = \frac{2}{2} \\ k = 2: \quad \sum_{n=1}^{l} n = |+2 = 3 = \frac{2(2+1)}{2} \end{array}$$

Step Z Let NEIN. Assume
$$\sum_{n=1}^{N} n = \frac{N(N+1)}{Z}$$

Step 3 Prove
$$\sum_{n=1}^{N+1} n = \frac{(N+1)(N+1+1)}{2} = \frac{(N+1)(N+2)}{2}$$

$$\sum_{n=1}^{N+1} n = 1+2+3+\dots+(N-1)+N+(N+1)$$

$$= \sum_{n=1}^{N} n + (N+1)$$

$$= \frac{N(N+1)}{2} + (N+1)$$

$$= \frac{N(N+1)+2(N+1)}{2}$$

$$= \frac{(N+1)(N+2)}{2}$$
Therefore, $\sum_{n=1}^{K} n = \frac{k(K+1)}{2}$ $\forall k \in \mathbb{N}$.

2.	Lemma 4: If r=-1, then {rk} does not converge. Proof: {(-1)*}looks like -1,1,-1,1,-1,1,	e what other values
	Assume $\{l-1\}^k$ converges to a R.	
	Let E=1.	of E could we have
	Since (-1) ^K →a, ∃N€N st K≥N⇒d((-1) ^K ,a)≤E=1	
	If K is odd, $(-1)^{K} = -1$, so we have that $d(-1, \alpha) < 1$.	used to reach a
	If K is even, $(-1)^{K}=1$, so we have that $d(1,a) < 1$.	
	Thus, a err is within one unit of 1 and -1. $\rightarrow \leftarrow$ \leftarrow \times \rightarrow \downarrow 0 -1 The green set and the blue set- are disjoint.	contradiction?
	Therefore, {(-1) ^k } does not Converge. 🔳	

Answer: we need ε to be such that $d(-1,a) < \varepsilon$ and $d(1,a) < \varepsilon$ is not possible.

 \mathcal{E} = 1 works because (-2,0) and (0,2) are disjoint.

$$-2 -1 00 1 2$$

If we let $\mathcal{E} = Z$, there is no contradiction.

If we let $\mathcal{E} = \frac{1}{2}$, there is a contradiction because $\left(\frac{-3}{2}, -\frac{1}{2}\right)$ and $\left(\frac{1}{2}, \frac{3}{2}\right)$ are disjoint.

In general, any ε st $0 - \varepsilon \le 1$ will lead to a contradiction.

$$d(0_1a) < 1/16$$
.
Thus, a is within 1/16 of a unit of $1/8_3 - 1/8_1$ and 0.
 $\longrightarrow \longleftarrow$

The blue set, the red set, and the green set are disjoint. Therefore, $\{\frac{\sin(k\pi/2)}{8}\}$ does not converge. 4. Prove that $\prod_{n=1}^{\infty} \left(\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}} \right)$ converges. a) What does s_k look like?

Answer:

$$S_{1} = \frac{1}{\sqrt{1}} - \frac{1}{\sqrt{2}} = \left| -\frac{1}{\sqrt{2}} \right| = \left| -\frac{1}{\sqrt{1}} \right| = \left| -\frac{1}{\sqrt{1+1}} \right|$$

$$S_{2} = \left| -\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{3}} \right| = \left| -\frac{1}{\sqrt{3}} - \frac{1}{\sqrt{1+1}} \right|$$

$$S_{3} = \left| -\frac{1}{\sqrt{3}} + \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{4}} \right| = \left| -\frac{1}{\sqrt{4}} - \frac{1}{\sqrt{1+1}} \right|$$

$$S_{4} = \left| -\frac{1}{\sqrt{4}} + \frac{1}{\sqrt{4}} - \frac{1}{\sqrt{5}} \right| = \left| -\frac{1}{\sqrt{5}} \right| = \left| -\frac{1}{\sqrt{4+1}} \right|$$

In general,
$$S_{k} = 1 - \frac{1}{\sqrt{k+1}}$$

b) show that
$$\frac{1}{5}$$
 sk3 converges.
Proof: I claim $\lim_{K \to \infty} S_{K} = \lim_{K \to \infty} \left(1 - \frac{1}{\sqrt{K+1}} \right) = 1$

Let $\epsilon > 0$. $d(1 - \frac{1}{\sqrt{k+1}}, 1) = |1 - \frac{1}{\sqrt{k+1}} - 1|$ $= |\frac{1}{\sqrt{k+1}}|$

$$= \frac{1}{\sqrt{k+1}}$$

$$\leq \varepsilon \quad \text{if} \quad k > \frac{1}{\varepsilon^2} - 1$$
side work: $\frac{1}{\sqrt{k+1}} < \varepsilon$

$$\implies \frac{1}{\varepsilon} < \sqrt{k+1}$$

$$\implies \frac{1}{\varepsilon^2} < k+1$$

$$\implies \frac{1}{\varepsilon^2} - 1 < k$$

$$\implies k > \frac{1}{\varepsilon^2} - 1$$

Thus,
$$S_{k} \rightarrow I$$
.
Therefore, $\underset{n=1}{\overset{\infty}{=}} \left(\frac{1}{n} - \frac{1}{\sqrt{n+1}} \right)$ converges. M