Continuity

- 1. Prove $\lim_{x\to 3} 2x 1 = 5$. Is 2x 1 continuous at x = 3?
- 2. Prove $\lim_{x \to 1} f(x) = -1$ where $f(x) = \begin{cases} x 2 & \text{if } x \ge 1 \\ x^2 x 1 & \text{if } x < 1 \end{cases}$ Is f continuous at x = 1?
- 3. Prove $\lim_{x \to -1} f(x) = 1$ where $f : \mathbb{R} \setminus \{-1\} \to \mathbb{R}$ defined by $f(x) = \frac{x^2 + 3x + 2}{x + 1}$. How could you extend f to a function on \mathbb{R} that is continuous at x = -1?
- 4. Prove that $\sin x$ is continuous on \mathbb{R} .

Hint: You will need the trig identity $\sin(\alpha + \beta) - \sin(\alpha - \beta) = 2\cos\alpha\sin\beta$, as well as the facts that $|\cos\alpha| \le 1$ and $|\sin\alpha| \le |\alpha|$.