Properties of convergence Let $a_n \rightarrow a$ and $b_n \rightarrow b$. Then 1. $a_n + b_n \rightarrow a + b$ 2. $a_n - b_n \rightarrow a - b$ 3. $a_n b_n \rightarrow a b$ 4. $a_n / b_n \rightarrow a / b_n$ $b_n \neq 0$ $y_{n \in \mathbb{N}}$ $b \neq 0$

$$|a_{n} - b_{n} - (a - b)| = |a_{n} - b_{n} - a + b|$$

$$= |a_{n} - a + b - b_{n}|$$

$$\leq |a_{n} - a| + |b - b_{n}|$$

$$= |a_{n} - a| + |b_{n} - b|$$

 $2 \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$ when $n \ge N_1$ and $n \ge N_2$ ie when $n \ge \max(N_{1,3}N_2)$ = ε

Therefore, $a_n - b_n \longrightarrow a - b$.

Theorem] If
$$\sum_{n=1}^{\infty} a_n$$
 converges, then $a_n \rightarrow 0$.
Proof: Assume $\sum_{n=1}^{\infty} a_n$ converges. Then the sequence
 $\xi_{k}\xi_{k}$ of kth partial sums converges, say $S_{k} \rightarrow C$.
 $S_{1} = a_{1}$
 $S_{2} = a_{1} + a_{2} = S_{1} + a_{2}$
 $S_{3} = a_{1} + a_{2} + a_{3} = S_{2} + a_{3}$
In general,
 $S_{k} = S_{k-1} + a_{k} \Rightarrow S_{k} - S_{k-1} = a_{k}$
 $\downarrow \qquad \downarrow$
 $C \qquad C$
 $\Rightarrow a_{k} \rightarrow O$
by convergence property 2.

Contrapositive: If an does not converge to zero, then
$$\frac{2}{n}a_n$$
 does not converge (ie it diverges)

This is commonly known as the **nth term test**.
Example:
$$\sum_{n=1}^{\infty} \frac{2n^2+1}{3n^2}$$
 $a_n = \frac{2n^2+1}{3n^2} \longrightarrow \frac{2}{3} \neq 0$
So $\sum_{n=1}^{\infty} \frac{2n^2+1}{3n^2}$ diverges

Converse: If
$$a_n \rightarrow 0$$
, then $\sum_{n=1}^{\infty} a_n$ converges.
False! Counterexample: $\sum_{n=1}^{\infty} \frac{1}{n}$
 $a_n = \frac{1}{n} \rightarrow 0$ but $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges
Let's prove this!

Proof: Let
$$S_{k} = \prod_{n=1}^{k} a_{n}$$
 and $T_{k} = \prod_{n=1}^{k} b_{n}$.
Recall, a bounded monotonic sequence converges
 $a_{n} \ge 0$ finet $M \implies \{S_{k}\}$ is increasing.
 $b_{n} \ge 0$ finet $N \implies \{T_{k}\}$ is increasing.

$$\sum_{n=1}^{\infty} b_n \text{ converges} \Rightarrow T_K \rightarrow T \text{ (for some value T)}$$
Since $\{T_K\}$ is increasing, $T_K \in T \quad \forall K \in \mathbb{N}$.
 $a_n \leq b_n \quad \forall n \in \mathbb{N} \Rightarrow \quad S_K \leq T_K \quad \forall K \in \mathbb{N}$
 $Thus, \quad S_K \leq T_K \leq T \quad \forall K \in \mathbb{N}$
 $\Rightarrow \quad S_K \leq T \quad \forall K \in \mathbb{N}$
 $\Rightarrow \quad \{S_K\} \text{ is bounded}$
Hence, $\{S_K\}$ converges.

Hence, $\xi S_k \overline{\xi}$ converges. Therefore, $\sum_{n=1}^{\infty} a_n$ converges.

Theorem 3 (Contrapositive) Let $0 \le a_n \le b_n$ then. If $\sum_{n=1}^{\infty} a_n$ diverges, then so does $\sum_{n=1}^{\infty} b_n$.

Claim:
$$\overset{\mathbb{Z}}{\underset{n=1}{\mathbb{Z}}} \overset{1}{\underset{n}{\mathbb{Z}}} \text{ diverges.}$$

Proof (of claim): Let $b_n = \overset{1}{\underset{n}{\mathbb{Z}}}$. To use Theorem 3, we
need to find a_n St $0 = a_n = \overset{1}{\underset{n}{\mathbb{Z}}}$ VheIN.
 $\overset{1}{\underset{n=1}{\mathbb{Z}}} \overset{1}{\underset{n}{\mathbb{Z}}} \overset{1}{\underset{n}{\mathbb{Z}$

$$D \leq a_n \leq h$$
 when
 $\sum_{n=1}^{\infty} a_n = 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \dots = \infty$ (diverges)
Therefore, $\sum_{n=1}^{\infty} h$ diverges.

Theorem $\overset{g}{\underset{n=1}{\overset{h}{n}}\overset{h}{\underset{n=1}{\overset{h}{n}}}$ converges \Leftrightarrow p>1. Proof: worksheet $\overset{g}{\underset{n=1}{\overset{h}{n}}\overset{h}{\underset{n}{\overset{h}{n}}}$ is called a p-series and this theorem is called the p-series test.