Continuity (cont.)

1. Let (X, d) be a metric space, $E \subseteq X$, and $p \in X$ a limit point of E (not necessarily in E). Prove there exists a sequence $\{p_n\}$ in E such that $p_n \neq p$ for all $n \in \mathbb{N}$ and $p_n \to p$.

Hint: For each $n \in \mathbb{N}$, consider the ball $B(p, \frac{1}{n})$. Since p is a limit point of E, what do you know about this ball? Use this to construct a sequence and show it converges to p.

- Let (X, d_X) and (Y, d_Y) be metric spaces, E ⊆ X, p ∈ X a limit point of E, q ∈ Y, and f: E → Y. Prove lim_{x→p} f(x) = q if and only if, for every sequence {p_n} in E satisfying p_n ≠ p for all n ∈ N and lim_{n→∞} p_n = p, we then have lim_{n→∞} f(p_n) = q. Hint: For the forward direction, assume lim_{x→p} f(x) = q, and let ε > 0. Write out what it means that lim_{x→p} f(x) = q using that ε. Then also assume that you have such a sequence {p_n} that converges to p. Write what that means using the δ you just found. Then put those together to show {f(p_n)} converges to q. For the converse, prove the contrapositive: Assume lim_{x→p} f(x) ≠ q, and write out what that means. Use that to produce a sequence {p_n} which converges to p, similar to problem 1, but {f(p_n)} does not converge to q.
- 3. Use problems 1 and 2 and the fact that limits of sequences are unique to conclude that the limit of a function is unique.

Hint: Assume $\lim_{x\to p} f(x) = q$ and $\lim_{x\to p} f(x) = r$. Problem 1 gives you the existence of a sequence $\{p_n\}$ which converges to p but is never equal to p. What does problem 2 tell you about $\{f(p_n)\}$? And how does the uniqueness of limits of sequences then tell you that q = r?