UCR Graduate Student Representation Theory Seminar

This is the website for the grad-student run Graduate Student Representation Theory Seminar (GSRTS) at UC Riverside, which meets on Thursdays from 12:30-1:50pm via Zoom. If you wish to attend, please contact Jonathan Dugan (jondugan@math.ucr.edu) for the Zoom link, or for any other questions or comments concerning the seminar.

GSRTS is an extension of the Lie Theory Seminar run on Tuesdays from 12:30-1:50pm. The website for that seminar is available at https://sites.google.com/view/petersamuelson/lie-theory-seminar.

Upcoming Talks

January 21, 2020: Jonathan Dugan
Title: Macdonald Polynomials and Demazure Modules for the Current Algebra 𝔰𝔩n + 1[t], Part I
Abstract: The notion of a Demazure module arises naturally from the representation theory of affine and quantum affine Lie algebras. An important family of these are the stable Demazure modules D(ℓ, λ) which admit an action of the current algebra. To study the structure of these modules, an important question to ask is, “What are their graded characters?” In the simply laced case, it was found through the work of Sanderson and Ion that the specialized Macdonald polynomials Pλ(z, q, 0) are the characters of the level one Demazure module D(1, λ), and in 2012 Naoi showed that for types BCF to find the graded characters for D(1, λ), it suffices to study the relationship between level one and level two Demazure modules for type A. To tackle this problem, in 2015 Wand introduced the Modules M(ν, λ) which interpolate between level one and level two Demazure modules. In 2020 in a paper published on the arXiv, Chari et. al showed for certain pairs (ν, λ) ∈ P+ × P+ that the graded characters of these modules M(ν, λ) are certain polynomials Gν, λ(z, q). In this talk, I will discuss my work to expand this equality to include all pairs of weights (ν, λ) ∈ P+ × P+.

January 28, 2020: Jonathan Dugan
Title: Macdonald Polynomials and Demazure Modules for the Current Algebra 𝔰𝔩n + 1[t], Part II
Abstract: In this talk, I will continue with the story that we began the previous week. I will finish the discussion of Demazure modules by exploring on the work of Chari et al to find their characters using the representation theory of the modules M(ν, λ). I will then finish by discussing my work to expand on their efforts, along with showing a few examples.

February 18, 2020: Joseph Wagner
Title: A Brief Introduction to Universal Enveloping Algebras
Abstract: I’ll start by motivating the topic, and then talk about how they’re constructed, proving that a representation of 𝔤 is the same thing as a representation of U(𝔤), and then, time permitting, discuss their bases and the PBW theorem.

March 4, 2020: Alex Pokorny

March 11, 2020: Maranda Smith

Past Speakers

Fall 2020

December 10, 2020: Alexander Pokorny
Title: The Character Rings of Classical Lie Groups & Symmetric Functions
Abstract: It’s hard to avoid combinatorics when studying representation theory. In this talk, I will explain one reason for why this statement is true. First we will discuss characters of representations of Lie groups, focusing on the cases of GLn, SOn, and SPn. Then I will explain what the ring of symmetric functions is and how it can model the behavior of these character rings. Later, I will describe the connections to skein theory.

November 19, 2020: Ethan Kowalenko
Title: Representation Theory for Oriented Matroids
Abstract: I’ll talk about oriented matroid programming, which is a generalization of linear programming, and discuss noncommutative algebras which can be defined for “generic” oriented matroid programs. I will then talk about the representation theory of these algebras is a nice subcase. This is joint work with my advisor, Carl Mautner. This will be a very rough version of my defense, so I’ll love to have as much feedback as possible!

November 12, 2020: Maranda Smith
Title: Casual Dip into Lie Theory
Abstract: We’ll be taking a pretty comfortable and intuitive look at what a Lie algebra is and how to work with their representations. There will be several examples as we go, primarily coming from Types A and D. We’ll wrap with a brief look at the representations that I specifically work with.
The aim of this talk is to give those of you in Lie Algebras part A some intuition to move forward with. Questions encouraged!
Notes for this talk available here.

October 29, 2020: Joseph Wagner
Title: Partitions and Tableaux
Abstract: In this talk, I will be covering Appendix A2 of H. Barcelo’s and A. Ram’s paper Combinatorial Representation Theory. I will define some concepts relating to partitions and tableaux, culminating in the theorem known as the Murnaghan-Nakayama rule.

October 22, 2020: Jonathan Dugan
Title: The Symmetric Group, Representation Theory, and Paradoxes in Voting Theory
Abstract: In this talk, I will explain how we can use representation theory of the symmetric group to model voting theory. A voter’s ranking of candidates can be represented using a combinatorial object called a tabloid, and the rankings of a group of voters can be seen as a representation of the group ring Sn. We will then turn our attention to positional voting procedures, which assign points to each candidate based on their position in a voter’s choice of tabloid. Lastly, I will present a result of Daugherty et al. that uses representation theory to show that the results of an election can more accurately reflect the choice of voting procedure rather than the views of the voters.

October 15, 2020: Alexander Pokorny
Title: Hecke Algebras of Coxeter Systems
Abstract: In this talk, I will define Coxeter groups and give a summary of their classification. Using this data, we can define so-called Hecke Algebras. We will mostly focus on the Hecke algebra of type An, and its relationship to representations of the quantum group Uq(𝔰𝔩n). If time permits, I would also very much like to discuss the Brauer and BMW algebras. I will assume very few prerequisites for this talk, so feel free to sit in even if you are unfamiliar. I will take ideas from Appendix B of the following expository paper by Barcelo & Ram https://arxiv.org/pdf/math/9707221.pdf, but also some from my personal notes.